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We present a phenomenological force-constant model developed for the description of lattice dynamics of
sp2 hybridized carbon networks. Within this model approach, we introduce a set of parameters to calculate the
phonon dispersion of graphene by fitting the ab initio dispersion. Vibrational modes of carbon nanotubes are
obtained by folding the two-dimensional �2D� dispersion of graphene and applying special corrections for the
low-frequency modes. Particular attention is paid to the exact dispersion law of the acoustic modes, which
determine the low-frequency thermal properties and reveal quantum size effects in carbon nanotubes. On the
basis of the resulting phonon spectra, we calculate the specific heat and the thermal conductance for several
achiral nanotubes of different diameters. Through the temperature dependence of the specific heat, we dem-
onstrate that phonon spectra of carbon nanotubes show one-dimensional behavior and that the phonon sub-
bands are quantized at low temperatures. Consequently, we prove the quantization of the phonon thermal
conductance by means of an analysis based on the Landauer theory of heat transport.
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I. INTRODUCTION

Phonons play a fundamental role in the physics and the
characterization of graphene and carbon nanotubes. Phenom-
ena such as charge,1–3 spin4 and heat transport,5–8 infrared
and Raman spectra,9–11 and electron-phonon scattering12–18

and its related effects as superconductivity19 and
resistivity20,21 can be understood, in most situations, only
with a detailed knowledge of the phonon spectrum. In par-
ticular, much effort has been done for determining thermal
and transport properties, which closely depend on the vibra-
tional modes. The most striking results of experimental and
theoretical research in this domain are the observation of the
quantization of the phonon band structure through an analy-
sis of the specific heat,22 the discovery of ballistic phonon
transport,23 and the measurement of the quantum of thermal
conductance in a nanowire.24 In technological applications
such as nanotube-based electronic devices, thermal proper-
ties are of central importance for understanding and control-
ling heat dissipation and self-heating effects.25 Efficient ther-
mal management is required for ensuring the performance
and stability of the devices.

Much experimental work has been done in measuring vi-
brational spectra10,11,26,27 and in detecting and controlling the
phonon population of isolated nanotubes.28 The best known
feature of experimental data is the strong Raman-active
radial-breathing mode �RBM�, which is often used for the
characterization or identification of different nanotubes in a
sample.29,30 From a theoretical point of view, phonon modes
of graphene have been studied either by effective models31,32

or by ab initio calculations.14,27,33–37 Several models have
been proposed for the lattice dynamics of carbon nanotubes,
ranging from zone folding and force-constant models,32,38–41

valence force-field models,42–44 and tight-binding
calculation45 to ab initio calculations.15,34,35,46

In this work we concentrate on the well-established
fourth-nearest-neighbor force-constant model by Jishi et al.32

It was developed and optimized for graphene and subse-
quently also adapted to carbon nanotubes by Saito et al.38,39

It has been reparametrized several times for graphene36,47,48

but, to our knowledge, no further calculations for carbon
nanotubes have been done. While the original parameters
were empirically determined by fitting experimental data of
graphite, we propose an alternative parametrization to fit the
ab initio phonon dispersion of graphene.49 With some correc-
tions, we also use this parametrization for the calculation of
the phonon dispersion of achiral carbon nanotubes. Main at-
tention is paid to the long-wavelength acoustic modes and to
the controversial question of the dispersion law of the
transverse-acoustic �TA� or flexure mode.40 While Saito et
al.39 obtained four linear-dispersing acoustic modes ���q�,
we obtain two linear modes and a doubly degenerate
quadratic-dispersing flexure mode ���q2�. The quadratic de-
pendence of the flexure modes of carbon nanotubes, pre-
dicted by continuum models20,50,51 and obtained by several
ab initio calculations,34,35,46 has been reproduced by only a
few force-constant models.40,43,52 One of the latter �the work
of Mahan and Jeon40� pursued a detailed study of the sym-
metry rules that led to a quadratic flexure mode and achieved
the correct behavior with a three-parameter spring-and-mass
model. It is chosen for comparisons throughout this paper.

We concentrate on an accurate description of the acoustic
phonons since they allow us to predict and interpret several
low-temperature thermodynamic properties and to prove
quantum size effects in carbon nanotubes. Using our force-
constant model, we calculate the specific heat and the ther-
mal conductance of carbon nanotubes of different diameters
and chiralities. Although the exact dispersion law of the
acoustic modes is apparently irrelevant for the quantized
thermal conductance,53 the quadratic dispersion of the flex-
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ure modes results in a very different behavior of the low-
temperature specific heat.54 Several experimental and theo-
retical studies have been achieved for determining the
specific heat of carbon nanotubes and nanotube ropes. Most
of them22,55–57 cover a wide temperature interval and provide
approximate estimations of the power law of the T depen-
dence, but only a few works54,58 extend the temperature
range down to �0.1 K and provide a more precise analysis.
Popov54 showed within a force-constant model that a T0.5

dependence of the specific heat at very low temperatures can
be directly related to the flexure modes. Lasjaunias et al.58

determined experimentally on a sample of nanotube ropes
that under �1 K a T0.62 dependence dominates. We study
the exact power law including temperatures in the mil-
likelvin region and illustrate how it is correlated with the
acoustic modes and the dimensionality of the system. As
done in Ref. 22, we prove the one-dimensional �1D� quanti-
zation of the phonon sub-bands in nanotubes.

Quantum size effects in carbon nanotubes are observed
even in the thermal conductance. The thermal conductance
of phonon waveguides in the ballistic, one-dimensional limit
was calculated by Rego et al.23 using the Landauer formula
and was proved experimentally by Schwab et al.24 Within the
same formalism, we show that the phonon thermal conduc-
tance of carbon nanotubes is quantized and we determine the
thermal conductance quantum. Our results are in good agree-
ment with theoretical calculations.53,59

This paper is structured as follows: In Sec. II we provide
a brief description of the system. Section III deals entirely
with vibrational properties. After a summary of lattice dy-
namics and the model approach in Secs. III A and III B, we
present our results for the phonon dispersions of graphene
and carbon nanotubes in Secs. III C and III D. In Sec. IV we
consider thermal properties. The basic concepts are recalled
in Sec. IV A, while Secs. IV B and IV C show our calcula-
tions of the low-temperature specific heat and the thermal
conductance, respectively. Section V contains final remarks.

II. SYSTEM

The typical honeycomb structure of graphene is defined
by a two-dimensional �2D� hexagonal lattice with a basis of
two atoms, which we call atoms A and B. The lattice vectors
are given by a1= ��3a /2,a /2� and a2= ��3a /2,−a /2�, with
the lattice constant a=2.46 Å, as illustrated in Fig. 1.

A carbon nanotube can be thought of as a single graphene
sheet that is wrapped into a seamless cylinder. It is common
to define a circumferential vector and a vector parallel to the
tube axis.38,61 The first one, called chiral vector, is defined in
terms of the unit vectors of graphene, C=na1+ma2, and the
sheet is rolled up in such a way that it becomes the circum-
ference of the tube. The pair of integers �n ,m� uniquely de-
fines a particular nanotube and thus provides a classification
among nanotubes. The translational vector T is perpendicu-
lar to C and reproduces the periodicity of the nanotube struc-
ture along the axis direction. It reads T= ��2m+n� /dR�a1
− ��2n+m� /dR�a2, where dR is the greatest common divisor
of �2m+n� and �2n+m�, as T should be the smallest lattice
vector in its direction. Alternatively a nanotube can be de-

fined also by its radius R and the chiral angle �, which is
given by the chiral vector measured relative to the direction
defined by a1. In this work we concentrate on the particular
cases of zigzag ��=0� and armchair ��=� /6� nanotubes,
which represent the class of achiral nanotubes.

III. VIBRATIONAL PROPERTIES

A. Lattice dynamics

To derive the equations of motion for the atoms, we use
Hamiltonian mechanics, treating the atoms as point masses
moving according to the laws of classical mechanics. To de-
scribe the ion configuration, characterized by the instanta-
neous location of the atoms, we use the following notation
for a crystal with a monoatomic basis:

R̃n�t� = Rn + un�t� . �1�

Hence at time t the ion is located at R̃n�t�, while Rn is its
equilibrium position. In the limit of small displacements un
of the atoms from their equilibrium position, the so-called
harmonic approximation, the equations of motion are a set of
coupled second-order differential equations given by

Mün = − �
m

��Rn,Rm� · um, �2�

where M is the mass of the constituent atom and ��Rn ,Rm�
is the 3�3 force-constant tensor that couples atoms n and m.
Due to lattice periodicity, it is possible to search for solutions
of Bloch-wave type

un
q�t� = Aeiq·Rne−i�t, �3�

where A gives the amplitude of the mode, � is the frequency,
and q is the wave vector. Inserting Eq. �3� into Eq. �2�, the
equations of motion become

�2MA = �
m

��Rn,Rm�eiq·�Rm−Rn�A . �4�

These can be written in the compact form

D�q� · A = �2A , �5�

where we introduce the discrete Fourier transform
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FIG. 1. The graphene honeycomb lattice with lattice vectors a1

and a2. A carbon nanotube can be constructed by rolling up the
graphene sheet along C so that points O and A coincide �as well as
B and B� do�. � denotes the chiral angle. �Figure is taken from Ref.
60.�
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D�q� =
1

M
�
m

��0,Rm�eiq·Rm. �6�

The matrix D�q� is called the dynamical matrix and is a
Hermitian and positive definite matrix. In order to obtain the
eigenvalues �2�q� and the eigenvectors A�q�, we have to
solve the secular problem det D�q�=0 for each q vector cho-
sen according to the Born–von Kármán periodic boundary
conditions. The generalization of the above described theory
to nonmonoatomic basis systems is easy and can be found,
e.g., in Ref. 62. Considering a three-dimensional system with
r atoms per unit cell, the dynamical matrix has 3r�3r com-
ponents so that for each wave vector q, there are 3r frequen-
cies �s�q�, with s=1, . . . ,3r.

B. Force-constant model

A practical method of investigating vibrational properties
of graphene and carbon nanotubes �CNTs� is given by phe-
nomenological lattice-dynamical models. These try to con-
struct the force-constant tensor by starting with an analytic
expression for the interaction energy of two or more carbon
atoms,40,52,63 or alternatively by approximating directly the
interatomic force constants by fitting experimental data.32,64

Such empirical models are based on a few adjustable param-
eters and are able to provide reliable information that is
complementary to that obtainable from more advanced meth-
ods. Indeed, an alternative tool is given by first-principles or
ab initio calculations based on the quantum-mechanical de-
scription of electrons.65,66 This method does not rely on input
from experimental information and includes all relevant ef-
fects, providing accurate, experimentally confirmed, and
therefore very predictive results, as was shown, e.g., in Refs.
67 and 68. However, the computational effort is large, lead-
ing to several restrictions in particular for complex systems
of considerable size. The advantage of the phenomenological
models consists in their simplicity and the possibility of fast
application to almost every system. In view of the aim of our
work, force-constant models turn out as the best choice for
two reasons: �i� they provide quick and reliable implementa-
tion for several CNTs of different diameters and chiralities;
and �ii� they reproduce with a high level of accuracy the
low-energy acoustic modes especially, which in turn deter-
mine almost entirely the low-temperature thermal properties
of CNTs.

We calculate the phonon modes of graphene and carbon
nanotubes using the force-constant model proposed by Saito
et al.38 This model consists of the direct parametrization of
the diagonal real-space force constants including up to
fourth-nearest-neighbor interactions �4NNFC approach�.
This leads to a set of 12 adjustable parameters. The trunca-
tion after the fourth-nearest neighbors is justified by the rapid
decay of the force constants.35,37 In the 4NNFC approach, the
force-constant tensor describing the interaction between an
atom and its nth-nearest neighbor on an arbitrarily chosen
axis �e.g., the x axis� has the diagonal form

� = ��r
�n� 0 0

0 �ti
�n� 0

0 0 �to
�n� 	 , �7�

where �r
�n�, �ti

�n�, and �to
�n� represent the force-constant param-

eters in the radial �bond-stretching�, in-plane, and out-of-
plane tangential �bond-bending� directions of the nth-nearest
neighbors. The radial direction corresponds to the direction
of the bonds and the two tangential directions are perpen-
dicular to it, as illustrated in Fig. 2. The force-constant ten-
sors for nearest-neighbor atoms of the same neighbor shell,
which are not located on the x axis, can be obtained by
unitary rotation of the tensor in Eq. �7�. The formalism is
described accurately in Ref. 38.

For example, for first-nearest neighbors �n=1�, we obtain
the force-constant tensor ��A,Bp� between atom A and its
neighbor Bp �p=2,3� by

��A,Bp� = Uz
−1�	p���A,B1�Uz�	p� , �8�

where Uz�	p� is a unitary rotation matrix around the z axis,

Uz�	p� = � cos�	p� sin�	p� 0

− sin�	p� cos�	p� 0

0 0 1
	 , �9�

and 	p is the angle defined by atoms B1, A, and Bp.
The above-mentioned tensors describe the interaction be-

tween atoms in the plane; for carbon nanotubes these have to
be adapted because of the curvature of the walls. It is pos-
sible to generate the force-constant tensors for the atoms of
the nanotube unit cell by rotation of the chemical bond from
the two-dimensional plane of graphene to the three-
dimensional coordinates of the nanotube.38 It is possible to
generate the force-constant tensors for all the atoms of the
unit cell of a nanotube from those related to a single atom of
the cell, e.g., atom A1 in Fig. 2. For atoms of type A, the
tensors of atom A1 must be rotated by an angle 
i around
the axis of the nanotube �here the y axis�,

��Ai,Bp� = Uy
−1�
i���A1,Bp−i+1�Uy�
i� . �10�


i is the polar angle between A1 and Ai around the circum-
ference. If �p− i+1� is negative or zero, we use � r

2 + p− i
+1� instead of it. For atoms of type B, we must rotate the
tensors of atom A1 first by � around the z axis and then by

i around the y axis, as before,

z y

x

r
φ

φ
to φ

ti

A1 B1

B2

B3

FIG. 2. �Color online� An atom A and its first nearest-neighbor
atoms Bp �p=1,2 ,3�. �r, �ti, and �to represent forces in radial,
in-plane, and out-of-plane directions.
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��Bi,Ap� = Uy
−1�
i�Uz

−1�����A1,Bp−i+1�Uz���Uy�
i� ,

�11�

where Uy��� and Uz��� are unitary rotation matrices around
the y and z axes, analogous to that of Eq. �9�. The dynamical
matrix is obtained by multiplying the force-constant tensors
obtained above by exp�iqznT�, where n is the number of the
unit cell in which atom A1 is situated, and T= 
T
 is the
modulus of the translational vector.

C. Results for graphene

In the calculation of the phonon-dispersion relation of
graphene done by Saito et al.,38 the force-constant param-
eters were empirically determined by fitting experimental
data of graphite obtained by inelastic neutron scattering. We
perform, instead, a parameter fit to the ab initio dispersion
relation of graphene calculated within density-functional per-
turbation theory by Bohnen and Heid.49 The corresponding
sets of force constants are listed in Table I.

Precisely, the fitting process was performed through a
matching of the force-constant tensor to those obtained by ab
initio calculations.49 This procedure is however limited by
the constraint of including up to fourth-nearest neighbors in
the force-constant tensor, as required by the model approach.
We varied and optimized the force constants in order to fit as
closely as possible the ab initio phonon dispersion. We fol-
low Gartstein52 in choosing the in- and out-of-plane tangen-
tial force constants �t

�n� so as to satisfy �t
�1�+6�t

�2�+4�t
�3�

+14�t
�4�=0. This equality is required by the rotational invari-

ance of the graphene plane, and the original parameters of
Saito et al.38 do not obey this rule. Figure 3 shows the
phonon-dispersion relation resulting from: �a� the original
parametrization and �b� our parametrization. Both curves are
superposed onto the ab initio dispersion of Bohnen and
Heid49 �dotted lines�, for direct comparison.

The dispersion relation of graphene comprises three
acoustic �A� and three optical �O� modes, which are either
out-of-plane �Z�, in-plane longitudinal �L�, or transverse �T�.
The acoustic ZA mode shows a q2 energy dispersion near �
rather than the linear dispersion of the TA and LA modes,
which is typical for acoustic modes in three-dimensional
�3D� solids. The quadratic dispersion is a characteristic fea-
ture of the phonon dispersion of layered crystals69 and can be
explained as a consequence of the D6h point-group symmetry
of graphene.38 Another consequence of the symmetry are the
linear crossings of the ZA/ZO modes and the LA/LO modes
at the K point. With respect to the phonon dispersion ob-

tained by Saito et al.38 and in comparison with first-
principles results, our parametrization yields a considerable
improvement in the overall phonon dispersion. In particular
the acoustic modes provide a remarkable good fit to ab initio
data. The frequency values at high-symmetry points �, M,
and K �listed in Table II� differ by only up to 4% from ab
initio data, with the exception of the TO mode �6.7% at M
and 8% at K�, which will be discussed later. In the high-
energy range, our parametrization leads to a qualitatively
correct rearrangement of the LA and LO modes along the
line M-K and an improvement concerning the crossing of the
LO and TO branches along the �-M and �-K directions.
Nevertheless, there are still major divergencies from the ab
initio dispersion for the LO and TO modes. Neither param-
etrization reproduces the initial upward curvature, called

TABLE I. Force-constant parameters for graphene in units of 104 dyn /cm=10 N /m.

Parameters by Saito et al. �Ref. 38� Our parametrization

Neighbor shell �r
�n� �ti

�n� �to
�n� �r

�n� �ti
�n� �to

�n�

First 36.50 24.50 9.82 41.8 15.2 10.2

Second 8.80 −3.23 −0.40 7.6 −4.35 −1.08

Third 3.00 −5.25 0.15 −0.15 3.39 1.0

Fourth −1.92 2.29 −0.58 −0.69 −0.19 −0.55
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FIG. 3. �Color online� Dispersion relation of graphene calcu-
lated with the 4NNFC model �solid lines� in direct comparison with
ab initio calculations �dotted lines� of Bohnen and Heid �Ref. 49�.
�a� 4NNFC approach with the original parametrization of Saito et
al. �Ref. 38�; �b� 4NNFC approach with our parametrization. The
corresponding sets of parameters are listed in Table I.
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overbending, of the LO branch away from � that is observed
in both the experimental data26,27,70,71 and in all published
first-principles calculations.14,27,33–37 Furthermore, the TO
phonon at the K point is significantly higher than in the ab
initio dispersion. It is known from literature that the highest
optical-phonon branch is shaped by the effect of electron-
phonon interactions, which results in a discontinuity in the
frequency derivative at � and K.14 These discontinuities are
called Kohn anomalies and are revealed by two sharp kinks
in the phonon dispersion. The two Kohn anomalies originate
from a nonanalytic behavior of the phonon dispersion, which
is impossible to be reproduced by a finite set of interatomic
force constants. All few-nearest-neighbor force-constant ap-
proaches yield a continuous slope at � and K. In summary,
the divergencies from ab initio curves appearing in the high-
frequency region are due to the natural limit of the accuracy
of empirical force-constant models, which consider a finite
number of nearest-neighbor atoms and miss the long-range
character of the dynamical matrix.

D. Results for carbon nanotubes

In this section we present phonon-dispersion relations of
achiral carbon nanotubes that rely on the earlier determined
force constants of graphene. We concentrate in particular on
the commonly studied �10,10� and �10,0� CNTs. The calcu-
lated phonon spectrum of a �10,10� CNT is illustrated in
Fig. 4 for both the original parametrization of Saito et al.38

and our parametrization. In Ref. 38 a scaling was proposed
for the force-constant parameters in order to treat the curva-
ture effect when rolling up the graphene sheet to form a
nanotube. This scaling prevents from obtaining a wrong shift
of the rotational-acoustic mode �twisting mode �TW�� at q
=0 from �4 cm−1. In the present work we do not apply the
same rescaling but vary empirically only the out-of-plane
tangential force constants �̃to

�n�=�to
�n��1+�n�� of graphene.

These are responsible for vibrations perpendicular to the
atom-bonding plane and thus are the most subjected to

changes when rolling a plane sheet into a cylinder. This ef-
fect increases with decreasing tube diameter. For a �10,10�
nanotube and the parametrization of Saito et al.,38 we obtain
a frequency of the twisting mode of ��10−3 cm−1 at q=0
by varying only �to

�4�.72 At this point it is important to observe
that even very small variations in the force constants can
have considerable effects on the low-frequency modes. In
particular, the frequency of the quadratically dispersing
modes is strongly affected by modifications of the param-
eters and can even become imaginary. For this reason, with
our parameter set it was not sufficient to correct �to only for
the fourth-nearest neighbors but to correct also for third- and
second-nearest neighbors.72 For the latter the correction is
smaller because these are less affected by the effect of cur-
vature. It results in a frequency of the TW mode equal to
��10−1 cm−1 at q=0.

The condition of infinitesimal rotational and translational
invariance imposed on the force-constant tensors gives rise
to four zero-frequency modes at q = 0. Near the � point,
the highest-energy acoustic mode is the longitudinal �LA�
mode, followed, in order, by a twisting or torsional mode
�TW� and a doubly degenerate transverse or flexure mode
�TA�. Figure 5 shows in detail the low-energy region of the
phonon spectrum of a �10,10� CNT for three different cases:
�a� and �b� are calculated with the 4NNFC model with the
parametrization for graphene of Saito et al.38 and with our
parametrization, respectively, both corrected for nanotubes.
Panel �c� is calculated with a three-parameter spring-and-
mass model for carbon nanotubes presented by Mahan and
Jeon;40 it is shown for direct comparison. The 4NNFC model
with the original parametrization of Saito et al. shows a lin-
ear dispersion at small wave vectors for all four acoustic

TABLE II. Phonon frequencies �cm−1� of graphene at high-
symmetry points.

Ref. 49 Ref. 37

Mode Ab initio LDA This work Ab initio GGA

� ZO 914 925 881

LO/TO 1576 1583 1554

M ZA 474 469 471

TA 632 626 626

ZO 641 633 635

LA 1351 1315 1328

LO 1375 1351 1340

TO 1437 1341 1390

K ZA/ZO 538 539 535

TA 1010 969 997

LA/LO 1243 1208 1213

TO 1302 1408 1288 0 0.5 1.0
qT / π

0

400

800

1200

1600
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m
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)

0 0.5 1.0
qT / π

(a) (b)

FIG. 4. �Color online� Phonon dispersion for a �10,10� CNT
calculated with the fourth-nearest-neighbor model with �a� the pa-
rametrization of Saito et al. �Ref. 38� and �b� our parametrization.
The corresponding parameters are listed in Table I. Both parametri-
zations have been subsequently corrected in order to obtain �=0 at
q=0 for the acoustic TW mode.
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modes. With our new parametrization of the 4NNFC model,
adapted to nanotubes, we found that, while the high-energy
optical phonons do not vary significantly, remarkable
changes occur for the acoustic modes. The two degenerate
TA modes now show quadratic dispersion near the zone cen-
ter, which was not given by the parametrization of Saito et
al. The model of Mahan and Jeon also obtains the quadratic
behavior of the flexure modes, due to a detailed analysis and
implementation of symmetry rules, which are required by the
correct force constants.

Also in the case of nanotubes with other diameters and
chiralities, we obtain the correct quadratic dispersion when
applying our parametrization. Figure 6 shows the phonon
dispersion of a �10,0� CNT calculated with the 4NNFC
model: the parametrization of Saito et al.38 provides linear
dispersions for all four acoustic modes �panels �a� and �c��,
while with our parametrization we obtain the quadratic TA
mode �panels �b� and �d��, which is given also by the model
of Mahan and Jeon40 �panel �e��. In particular, after adapting
the force constants �to

�n�,72 as in the case of the �10,10� CNT,
we obtain ��10−1 cm−1 at q=0 for the TW acoustic mode,
for both parametrizations.

Furthermore, we concentrate on the important Raman-
active radial-breathing mode �RBM�. This mode arises from
a radial expansion and contraction of the entire tube. It is
unique to single-walled CNTs and plays an important role in
experiments.11,28 One of the most important applications of
the RBM is the determination of nanotube diameters on the
basis of Raman data, through the expected dependence of the
RBM frequency on diameter,

�RBM =
C1

dt
� + C2�dt� , �12�

where C1 is a constant, C2 possibly depends on the diameter
dt, and � is an exponent. This functional dependence was
first introduced by Jishi et al.32 with C2=0 and �=1. Several
papers and a range of values of C1 have been published,
differing from each other by a few percent. A review of the
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FIG. 5. �Color online� Low-frequency region of the phonon-
dispersion relation of a �10,10� CNT, shown near the � point, cal-
culated within �a� 4NNFC model with the original parametrization,
�b� 4NNFC model with our parametrization, �c� force-constant
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experimental and theoretical values can be found in Ref. 61.
For isolated tubes the values range from C1=218 to
248 cm−1 nm.

We verify the relation in Eq. �12� and analyze the chirality
dependence of the RBM frequency. For this purpose, we cal-
culate the RBM frequencies of a number of armchair and
zigzag nanotubes with the 4NNFC model with our param-
etrization adapted to CNTs. The obtained frequencies are al-
most perfectly inverse proportional to the radius of the tube,
as shown in Fig. 7�a�, and independent of chirality. The
RBM frequency decreases with increasing tube diameter and
becomes zero in the limit of infinite diameter, which corre-
sponds to the out-of-plane tangential-acoustic mode of
graphene at q=0. By fitting the frequencies of the RBM to
tube diameters by using the relation in Eq. �12�, we get neg-
ligible values for C2 �on the order of 10−1 cm−1 nm�, and
C1=212 cm−1 nm for armchair tubes �Fig. 7�b��, which is in

satisfactory agreement with the experimental value of
224 cm−1 nm.73 For zigzag nanotubes �Fig. 7�c��, we obtain
C1=209 cm−1 nm. The values of C1 are in agreement also
with previous calculations.34,42,74 The frequencies obtained
by the original parametrization of Saito et al.38 are displayed
in Fig. 7 by the dashed lines. We obtain C1=223 cm−1 nm
for armchair tubes and C1=222 cm−1 nm for zigzag nano-
tubes. They are in better agreement with experimental values
than our parametrization, since the RBM frequencies are on
average about 8 cm−1 higher.

A possible chirality dependence is below the resolution of
the data. Indeed the proportionality constant C1 differs by
only about 1% between armchair and zigzag nanotubes. This
can be explained by the fact that the RBM corresponds to a
stretching of the graphene sheet in the �110� �armchair tubes�
or �100� �zigzag tubes� direction. Because the system is iso-
tropic in the hexagonal plane, the elastic constant that the
describes the stretching of a graphene sheet is independent of
the direction.74

Beneath the RBM, the other low-frequency modes also
depend strongly on the tube diameter.38,46 In contrast, the
higher-frequency modes do not have such a strong diameter
dependence since their frequencies are more sensitively de-
termined by the local displacements of the atoms.

IV. LOW-TEMPERATURE THERMAL PROPERTIES

A. Methods

1. Specific heat

In order to characterize the specific heat at constant vol-
ume of low-diameter single wall CNTs, we start from the
definition

cV =
1

V
 �E

�T
�

V

, �13�

where the internal energy E=kBT2�� ln Z /�T� is defined
through the vibrational partition function Z. According to
statistical thermodynamics, the partition function of a system
of independent harmonic oscillators can be directly ex-
pressed in terms of the phonon frequencies by

Z = �
q,s

e−��s�q�/2kBT

1 − e−��s�q�/kBT . �14�

Here, q is the phonon wave vector, �s�q� are the phonon
frequencies with mode index s=1, . . . ,3r �r is the number of
atoms per unit cell; see Sec. III A�, T is the temperature, kB is
the Boltzmann constant, and � is the Planck constant. The
specific heat can thus be written as

cV =
kB

V
�
q,s
���s�q�

2kBT
�2 1

sinh2���s�q�/2kBT�
. �15�

We do not distinguish between specific heat at constant vol-
ume, cV, or constant pressure, cP, since the model approaches
do not include thermal expansion of the lattice. Anyway, the
difference between cV and cP is only in the range of a few
percent.37 For densely spaced values of the wave vector q, it
is possible to replace the sum by an integral
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FIG. 7. �Color online� �a� Frequency of the radial-breathing
mode of various armchair �n=3–12� and zigzag �n=6–20� tubes as
a function of the nanotube diameter, calculated with the 4NNFC
model with our parametrization. For comparison, the dashed lines
show the results for the original parametrization of Saito et al. �Ref.
38�. ��b� and �c�� Frequency of the RBM as a function of the inverse
tube diameter for armchair and zigzag tubes. The solid lines are a
linear fit to the data excluding the small-diameter tubes �3,3�, �4,4�,
�6,0�, and �7,0�, which are marked by circles. These show a devia-
tion from the predicted behavior, with a decrease in the RBM fre-
quency. Reference 34 explains it as a consequence of the hybridiza-
tion changes and the decrease in the � interaction induced by the
curvature.
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�
q,s

→�
s
� dq � �

s

V

�2��3� d3q �16�

=3r N�
0

�

g���d� , �17�

where g��� is the density of states �DOS� and N is the num-
ber of unit cells. The expression for the specific heat results
as

cV = 3r kB�
0

�

d� ��

2kBT
�2 g���

sinh2���/2kBT�
. �18�

Therefore the specific heat depends in a detailed way on the
frequency spectrum g��� of the normal modes.

2. Landauer phonon transport

Phonon heat transport in mesoscopic systems can be in-
vestigated using methods analogous to the Landauer descrip-
tion of electrical conductance.23,75 We consider a model of an
ideal one-dimensional heat conductor, built by two long per-
fect leads that join a central segment in which the phonon
scattering occurs. Only elastic scattering is taken into ac-
count, while phonon-phonon interaction is neglected. The
free ends of the two leads are connected to reservoirs of
temperatures Thot and Tcold. No scattering occurs at the
reservoir-lead connections. The energy flux of the right/left
moving phonons is given by23,24,76

J+/− =
1

2�
�

s
�

0

�

dq ��s�q��hot/cold„�s�q�…vs�q�Ts�q�

=
1

2�
�

s
�

�s
min

�s
max

d� �� �hot/cold���Ts��� , �19�

where �s�q� is the dispersion relation of the discrete mode s,
vs�q� is the group velocity, and Ts�q� are transmission
coefficients characterizing the coupling of waveguide
modes to the reservoirs. The total heat current is therefore
Jph=J+−J−. Assuming perfectly adiabatic contact between
the thermal reservoirs and the ballistic quantum wire, the
transmission function for a monotonically dispersing mode s
is the step function

Ts��� = �1 for �s
min � � � �s

max

0 otherwise.
� �20�

Instead, for nonmonotonic dispersions, given a frequency �̄,
the transmission Ts��̄� is defined as the number of crossings
of the line �= �̄ with the phonon dispersion of the mode s.
With the total transmission function given by T=�sTs���, the
Landauer energy flux results as23

Jph = �
0

� d�

2�
����hot − �cold�T��� . �21�

Eventually, the thermal conductance is defined as

�ph =
Jph

�T
, �22�

with �T=Thot−Tcold. In the limit of linear response,
�T�T��Thot+Tcold� /2, we obtain using Eq. �21� and the
substitution x=�� /kBT the following:

�ph =
kB

2T

h
�

0

�

dx
x2ex

�ex − 1�2Tx
kBT

�
� . �23�

This equation plays the role of a “universal” phonon conduc-
tance. An important statement is that the result is indepen-
dent of all details of the dispersion curve except the trans-
mission function. This arises because the density of states in
the frequency integral is canceled by the group velocity.

B. Specific-heat results

The specific heat of carbon nanotubes is mainly deter-
mined by phonons, while electronic contributions to it can be
neglected even at a few kelvins.77 According to Eq. �18�, it
depends sensitively on the characteristics of the phonon
spectrum and on its vibrational DOS.

The specific heat calculated from the theoretical DOS
spectra is shown in Fig. 8 as a function of temperature. At
high temperatures, the specific heat of all the different ap-
proaches and all chiralities converges to the classical limit of
3kB /M =2078 mJ /g K, with M as the atomic mass of carbon
�see inset of Fig. 8�a��. In the low-temperature regime that
we are interested in �below 20 K; see Fig. 8�b��, the specific
heat of graphene is dominated by the quadratic out-of-plane
bending mode and is expected to have a linear T dependence
at very low temperatures. The nanotube curve is lower than
the graphene one because the tube has no low-energy coun-
terpart to the layer-bending modes.22 In this temperature
range, nanotube modes with ��s�q��kBT will negligibly
contribute to Eq. �18�, since the integrand will vanish expo-
nentially. Optical phonons are frozen out and only the long-
wavelength acoustic modes are populated because for these
�s�q�→0 as q→0 holds. Therefore, the acoustic modes
alone determine the low-temperature behavior of the specific
heat. Only at a temperature Topt���opt /6kB does the lowest-
lying optical sub-band with frequency �opt at q=0 begin to
contribute to the specific heat.55 The two cV curves calculated
by the model of Mahan and Jeon40 �dotted-dashed line in
Fig. 8�b�� and by the 4NNFC model with our parametrization
�solid line� coincide in the temperature range of a few
kelvins. This was expected because both models predict qua-
dratically dispersing flexure modes and thus analogous low-
temperature behavior. The slope of the curves increases
smoothly when the first optical sub-band begins to contribute
to cV. In the model of Mahan and Jeon,40 this takes place at
Topt�3 K, while for our parametrization it appears at about
5 K, due to the different frequencies of �opt, which are 12.6
and 20.2 cm−1. The 4NNFC model with parametrization of
Saito et al.38 instead yields linearly dispersing flexure modes
and the �log cV� vs �log T� curve �in Fig. 8�b�� shows a
higher slope than the two curves described just now. Due to
the lowest-lying optical mode with �opt=21.0 cm−1, the
slope increases at �5 K, as expected.
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The low-temperature behavior of the cV vs T curves needs
to be analyzed in detail. Indeed, the behavior of cV contains
information regarding the dimensionality of the system
through a fixed correlation between cV, the DOS, and the
exact dispersion law.54 According to Table III, through evalu-
ation of the exponent � in the power law cV�T�, it is pos-
sible to get information about the dimensionality of the sys-
tem. Since nanotubes are quasi-one-dimensional �1D�
systems consisting of rolled-up 2D sheets, they should dis-
play both 1D quantum size effects and 2D features.

Figure 9 shows the low-temperature specific heat for the
�10,10� and the �10,0� with the 4NNFC model and our pa-
rametrization, and the inset shows the slope � of �log cV� vs
�log T� curves. In the millikelvin temperature range, �
clearly tends to the value 1/2. This is almost entirely due to
the doubly degenerate flexure mode with quadratic disper-

sion law �see Table III�, which dominates in this temperature
range. With increasing temperature �0.8–5 K for the �10,10�
CNT�, the contribution of the two linearly dispersing modes
also becomes stronger and � holds values between 1/2 and 1
due to the superposition of these four modes. Above Topt the
slope changes considerably due to the optical phonons and
the tube is essentially 2D. This behavior is in accordance
with theoretical predictions22 and is a direct confirmation of
quantized 1D phonon sub-bands in carbon nanotubes. Our
results for low-temperature cV agree very well with previous
calculations of Popov,54 and additionally we extended the
low-temperature limit by 2 orders of magnitude. We also find
good agreement with experimental results of Lasjaunias et
al.,58 who measured the specific heat down to 0.1 K and
fitted their measured curves with a power law of 0.043T0.62

+0.035T3. However, experimental measurements are usually
performed on bundles of nanotubes, whose properties can
differ greatly from those of isolated tubes. The addition of
tubes to a bundle suppresses in particular the bending flexure
modes, with a consequent increase in the exponent � in favor
of a linear T dependence.

We achieved similar results for other armchair and zigzag
nanotubes. However, since the first optical sub-band edge
varies from tube to tube and depends on the model, the turn-
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FIG. 8. �a� Specific heat as a function of temperature for
graphene �dotted line�, calculated with the 4NNFC model and our
parameters, and for a �10,10� CNT calculated with the model of
Mahan and Jeon �Ref. 40� �dotted-dashed line�, the 4NNFC model
with our parameters �solid line�, and the 4NNFC model with the
original constants of Saito et al. �Ref. 38� �dashed line�. The inset
shows a wider temperature interval: cV approaches the value
2078 mJ /g K for high temperatures. �b� Specific heat on a logarith-
mic scale for the low-frequency region. The assignment of the line
styles is the same as in �a�.

TABLE III. Low-temperature behavior of the specific heat. The
dimensionality of the system is correlated with the density of states
and, therefore, to the specific heat. At low temperature only acoustic
modes are excited. These can have either linear or quadratic
dispersion.

Dimensionality Phonon dispersion Phonon DOS Specific heat

1D ��q2 g����1 /�� cV��T

��q g���=const cV�T

2D ��q2 g���=const cV�T

��q g����� cV�T2

3D ��q g�����2 cV�T3
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FIG. 9. Low-temperature specific heat for a �10,10� and a �10,0�
CNT calculated with the 4NNFC and our parametrization. The inset
shows the value of their slope �=d�log cV� /d�log T�.
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ing points in cV vs T curves are different, causing a crossover
of cV curves. The general uptrend and the high-temperature
limit are the same. Figure 10�a� shows the specific-heat
curves for a �10,10� and a �10,0� CNT. The tube diameter
influences the specific heat of carbon nanotubes, especially
in the range of 25–350 K. In order to determine the effect of
tube diameter on the specific heat, additional results for
T=300 K are displayed in Fig. 10�b�, using the 4NNFC
model with our parametrization. At a fixed temperature, the
specific heat increases with increasing tube diameter. This
was as expected, since for very large diameters the curve
should approach the cV value of graphene, which is
794 mJ /g K at 300 K. However, the effect decreases at large
tube diameter. The chirality shows only a small effect in the
tubes specific heat, with cV of the zigzag tubes lying over
that of the armchair tubes. This small effect is negligible and
could also be caused by inaccuracies of the model descrip-
tion. The results are in good agreement with those of Refs.
56 and 57.

C. Thermal conductance

In the following, we demonstrate that at low temperatures
a carbon nanotube behaves as a ballistic, one-dimensional
wire and that the phonon thermal conductance is quantized.
The thermal conductance can be calculated by evaluating Eq.
�23�. In this expression, the integrand is given by the product
of two functions: the transmission function and a weight
function x2ex / �ex−1�2. The former is related to the phonon
spectral properties of the nanotube and the latter takes into
account the effects due to temperature. Figure 11 shows the
transmission function T=�sTs��� for a �10,10� CNT. Some
branches are counted twice because of their degeneracy. For
high temperatures, these two functions are nonzero within
the same range, which means that all the transmission modes
contribute to the thermal conductance. Whereas, in the limit

of low temperature, the broadness of the weight function is
extended only to the low-energy modes. Therefore, at low
temperatures only four acoustic modes give an appreciable
contribution to the thermal conductance of a carbon nano-
tube. In this temperature regime, Eq. �23� becomes greatly
simplified as

�ph �
kB

2T

h
4�

0

�

dx
x2ex

�ex − 1�2 = 4
�2kB

2T

3h
. �24�

Here, the factor 4 represents the number of acoustic modes.
The upper limit of the integral is of little importance because
the integrand function falls off rapidly before the successive
step in the transmission function takes place. From Eq. �24�
it can be seen that a fundamental relation holds for each
mode,

�0 =
�2kB

2T

3h
. �25�

This quantum of thermal conductance represents the maxi-
mum possible value of energy transported per phonon mode.
It does not depend on particle statistics; therefore, it is uni-
versal for fermions, bosons, and anyons.78 Furthermore, it is
independent of any material parameters and of precise details
of the dispersion law. This is clear since to construct the
transmission function as in Eq. �20�, it does not matter
whether the dispersions are linear or quadratic, but the
branch upper and lower limits should be accurately com-
puted.
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The phonon thermal conductance �ph of a �10,10� CNT as
a function of temperature is shown in Fig. 12�a�, already
normalized by 4�0. For temperatures in the range of a few
kelvins, this ratio reaches the constant value of 1, indepen-
dent of the model approach and of chirality. This behavior
confirms that the thermal conductance of carbon nanotubes is
quantized. Despite the quantization, the curves do not
present steps because of the broadening of the Bose-Einstein
distribution in comparison with the energy gap between sub-
band edges. The length of the plateau depends on the lowest
optical frequency of the dispersion curve. Indeed, the turning
point in the curve of the �10,10� CNT calculated with the
model of Mahan and Jeon40 �Fig. 12�a�, dotted-dashed line�
is about 2 K, while it is higher for the 4NNFC model with
both parametrizations �about 3 K�. As predicted, the exact
dispersion law of the acoustic TA mode does not affect the
qualitative behavior of the �ph vs T curve. The two curves for
the 4NNFC model result from a quadratic and linear disper-
sion of the TA mode but show the same low-temperature

behavior. The deviations above 10 K are due to small differ-
ences in the respective optical frequencies.

The results of the 4NNFC model are believed to be more
accurate than the ones obtained using the method of Mahan
and Jeon40 for the phonon dispersion because the latter does
not correctly reproduce the graphene dispersion. Eventually,
the thermal conductance depends on the tube radius only and
not on chirality. Results for armchair tubes are very similar
to the ones for zigzag tubes when same diameters are com-
pared. This arises because the energy �� of the lowest-lying
optical modes is determined only by the tube radius and
decreases approximately according to �1 /R2 �see Ref. 59�.
Figure 12�b� shows the thermal conductance for some arm-
chair and zigzag nanotubes.

Our results are in very good agreement with those of
Yamamoto et al.59 and Mingo and Broido.53 Experimental
studies were achieved by Schwab et al.,24 who observed the
quantum thermal conductance in a nanofabricated 1D struc-
ture, which behaves essentially like a phonon waveguide.

Finally, we would like to express a word of caution to
specify the limits of the Landauer model of heat conduction.
It must be stated that it describes an idealized case of ballis-
tic transport through a one-dimensional waveguide, where
the phonon transmission occurs without scattering by defects
or scattering at the reservoir-lead connection. The waveguide
and the reservoirs are coupled adiabatically and anharmonic-
ity and phonon-phonon interactions are neglected. These
conditions are fulfilled only at low temperatures, where the
phonon mean free path is limited only by the size of the
system and anharmonic terms are small compared with the
harmonic part of the Hamiltonian. However, as long as the
system size exceeds the mean free path, which strongly de-
pends on temperature, scattering of phonons due to anhar-
monic terms of the interatomic potential begins to decrease
the conductivity and the transport ceases to be ballistic. In-
deed, anharmonic terms give rise to phenomena as finite
phonon lifetimes and interaction between phonons. These de-
termine strongly the transport properties at higher tempera-
tures and are responsible for finite thermal conductivity.

V. CONCLUSIONS

We presented a combined theoretical investigation of both
vibrational and thermal properties of graphene and carbon
nanotubes within a force-constant model. First, we fitted the
phonon dispersion of graphene to that obtained with ab initio
calculations by Bohnen and Heid49 and found reasonable
agreement for the overall dispersion and good agreement for
the acoustic modes. The frequency values at high-symmetry
points �, M, and K lie close to those obtained by various
first-principles calculations �about 4%, with the exception of
only one mode�. Then we presented results for the phonon
spectra of achiral carbon nanotubes and focused on the low-
frequency region. The dispersion of the doubly degenerate
flexure mode shows an ��q2 behavior at long wavelengths,
as predicted by several theoretical works. Particular attention
has been paid to the radial-breathing mode, with a detailed
analysis of the frequency and chirality dependence on the
tubes’ diameter. On the basis of the so-obtained phonon spec-
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FIG. 12. �Color online� �a� Phonon thermal conductance for a
�10,10� CNT calculated with the model of Mahan and Jeon �Ref.
40� �dotted-dashed line�, the 4NNFC model with our parameters
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tively, quadratic and linear dispersions for the TA mode. �b� Ther-
mal conductance for several carbon nanotubes, calculated with our
parametrization.
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tra, we calculated the specific heat and the thermal conduc-
tance of carbon nanotubes. The quadratic dispersion of the
flexure modes leads to a �T dependence of the specific heat
at very low temperatures. This is a direct confirmation of the
one-dimensional behavior of carbon nanotubes at low tem-
perature. Concerning heat transport, we showed that nano-
tubes can conduct heat by ballistic phonon propagation.
At low temperatures the thermal conductance for a
single phonon channel approaches a maximum value of
�0=�2kB

2T /3h, which is the universal quantum of thermal
conductance. We showed that for nanotubes of different di-
ameters and chiralities, the thermal conductance reaches the
value 4�0 for T→0, where the factor 4 is due to the four
acoustic modes of a nanotube. All our results are in very

good agreement with theoretical and experimental data avail-
able in literature.
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